科目: 来源: 题型:解答题
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有
.
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若
对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为
,高
,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大
(高不变);二是高度增加
(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积(地面无需用材料);
(3)哪个方案更经济些?
查看答案和解析>>
科目: 来源: 题型:解答题
椭圆c:
(a>b>0)的离心率为
,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.
查看答案和解析>>
科目: 来源: 题型:解答题
某通讯公司需要在三角形地带
区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域
内,乙中转站建在区域
内.分界线
固定,且
=
百米,边界线
始终过点
,边界线
满足
.
设
(
)百米,
百米.![]()
(1)试将
表示成
的函数,并求出函数
的解析式;
(2)当
取何值时?整个中转站的占地面积
最小,并求出其面积的最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知关于x的一元二次函数![]()
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,
求函数
在区间[
上是增函数的概率;
(2)设点(
,
)是区域
内的随机点,求函数
上是增函数的概率.
查看答案和解析>>
科目: 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式;
(2)当车流密度
为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
查看答案和解析>>
科目: 来源: 题型:解答题
为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间
(单位:天)变化的函数关系式近似为
若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(
)个单位的药剂,要使接下来的4天中能够持续有效净化,试求
的最小值(精确到0.1,参考数据:
取1.4).
查看答案和解析>>
科目: 来源: 题型:解答题
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽
为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为
,对称轴与地面垂直,沟深2米,沟中水深1米.
(1)求水面宽;
(2)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?![]()
![]()
(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
查看答案和解析>>
科目: 来源: 题型:解答题
某公司以每吨10万元的价格销售某种产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少
,该产品每吨的价格上涨百分之几,可使销售的总金额最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com