相关习题
 0  149812  149820  149826  149830  149836  149838  149842  149848  149850  149856  149862  149866  149868  149872  149878  149880  149886  149890  149892  149896  149898  149902  149904  149906  149907  149908  149910  149911  149912  149914  149916  149920  149922  149926  149928  149932  149938  149940  149946  149950  149952  149956  149962  149968  149970  149976  149980  149982  149988  149992  149998  150006  266669 

科目: 来源: 题型:解答题

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

查看答案和解析>>

科目: 来源: 题型:解答题

某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数
(1)求函数在点(0,f(0))处的切线方程;
(2)求函数单调递增区间;
(3)若∈[1,1],使得(e是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数的图象在点(e为自然对数的底数)处取得极值-1.
(1)求实数的值;
(2)若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(1)求实数a的值;
(2)如果当时,不等式恒成立,求实数m的最大值;
(3)求证:

查看答案和解析>>

科目: 来源: 题型:解答题

一次函数上的增函数,,已知.
(1)求
(2)若单调递增,求实数的取值范围;
(3)当时,有最大值,求实数的值.

查看答案和解析>>

科目: 来源: 题型:解答题

计算
(1)
(2).

查看答案和解析>>

科目: 来源: 题型:解答题

若函数f(x)对任意的实数x1x2D,均有|f(x2)-f(x1)|≤|x2x1|,则称函数f(x)是区间D上的“平缓函数”.
(1)判断g(x)=sin xh(x)=x2x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有|xn+1xn|≤,设yn=sin xn,求证:|yn+1y1|<.

查看答案和解析>>

科目: 来源: 题型:解答题

已知二次函数f(x)=ax2+x,若对任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集为A.
(1)求集合A;
(2)设集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范围.

查看答案和解析>>

同步练习册答案