科目: 来源: 题型:解答题
已知函数
,点
、
在函数
的图象上,
点
在函数
的图象上,设![]()
.
(1)求数列
的通项公式;
(2)记
,求数列
的前
项和为
;
(3)已知
,记数列
的前
项和为
,数列
的前
项和为
,试比较
与
的大小.
查看答案和解析>>
科目: 来源: 题型:解答题
在一条笔直的工艺流水线上有
个工作台,将工艺流水线用如图
所示的数轴表示,各工作台的坐标分别为
,
,
,
,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.![]()
(Ⅰ)若
,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若
,工作台从左到右的人数依次为
,
,
,
,
,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
(14分)已知函数
.
(Ⅰ)求函数
的最小值;
(Ⅱ)求证:![]()
;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知二次函数
的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线
上的点
到点
的距离的最小值为
,求
的值;
(2)
如何取值时,函数
存在零点,并求出零点.
查看答案和解析>>
科目: 来源: 题型:解答题
为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系:![]()
若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求
的值及
的表达式;
(Ⅱ)隔热层修建多厚时,总费用
最小,并求最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
对于函数
,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(Ⅰ)判断函数
是否为 “(
)型函数”,并说明理由;
(Ⅱ)若函数
是“(
)型函数”,求出满足条件的一组实数对
;,
(Ⅲ)已知函数
是“(
)型函数”,对应的实数对
为
.当
时,![]()
![]()
,若当
时,都有
,试求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度x的一次函数.
(Ⅰ)当
时,求函数
的表达式;
(Ⅱ)当车流密度
为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目: 来源: 题型:解答题
某企业生产某种商品
吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com