相关习题
 0  149848  149856  149862  149866  149872  149874  149878  149884  149886  149892  149898  149902  149904  149908  149914  149916  149922  149926  149928  149932  149934  149938  149940  149942  149943  149944  149946  149947  149948  149950  149952  149956  149958  149962  149964  149968  149974  149976  149982  149986  149988  149992  149998  150004  150006  150012  150016  150018  150024  150028  150034  150042  266669 

科目: 来源: 题型:解答题

是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数 ”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)

(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数 是自然对数的底数)的最小值为
(Ⅰ)求实数的值;
(Ⅱ)已知,试解关于的不等式
(Ⅲ)已知.若存在实数,使得对任意的,都有,试求的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

某公司拟投资开发某种新能源产品,估计能获得10万元至1000万元的投资收益.为加快开发进程,特制定了产品研制的奖励方案:奖金(万元)随投资收益(万元)的增加而增加,但奖金总数不超过9万元,同时奖金不超过投资收益的20%. 
现给出两个奖励模型:①;②.
试分析这两个函数模型是否符合公司要求?

查看答案和解析>>

科目: 来源: 题型:解答题

已知是定义在上的偶函数,且时,
(Ⅰ)求
(Ⅱ)求函数的表达式;
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知正项数列中,,点在抛物线上;数列中,点在过点(0, 1),以为斜率的直线上。
(1)求数列的通项公式;
(2)若   , 问是否存在,使成立,若存在,求出值;若不存在,说明理由;
(3)对任意正整数,不等式恒成立,求正数的取值范围。

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数
(1)若存在,使得成立,求实数的取值范围;
(2)解关于的不等式
(3)若,求的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数满足:①;②.
(1)求的解析式;
(2)若对任意的实数恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案