科目: 来源: 题型:解答题
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数
(其中
为大于0的常数),在
上是减函数,在
上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为
元/千克,政府补贴为
元/千克,根据市场调查,当
时,这种食品市场日供应量
万千克与市场日需量
万千克近似地满足关系:
,
。当
市场价格称为市场平衡价格。
(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;
(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?
查看答案和解析>>
科目: 来源: 题型:解答题
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨
元(
为正整数),每个月的销售利润为
元.(14分)
(1)求
与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
科目: 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格
(单位:元/千克)满足关系式y=
+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成品为3元/千克, 试确定销售价格x的值, 使商场每日销售该商品所获得的利润最大.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数
,在
时取得极值.
(Ⅰ)求函数
的解析式;
(Ⅱ)若
时,
恒成立,求实数m的取值范围;
(Ⅲ)若
,是否存在实数b,使得方程
在区间
上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*)
(1)设完成A 型零件加工所需时间为
小时,写出
的解析式;
(2)为了在最短时间内完成全部生产任务,x应取何值?
查看答案和解析>>
科目: 来源: 题型:解答题
已知二次函数
的最小值为1,且
.
(1)求
的解析式;
(2)若
在区间
上不单调,求实数
的取值范围;
(3)在区间
上,
的图像恒在
的图像上方,试确定实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
千元,设该容器的建造费用为
千元.![]()
(1)写出
关于
的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数
是定义在
上的奇函数,当
时,有
(其中
为自然对数的底,
).
(1)求函数
的解析式;
(2)设
,
,求证:当
时,
;
(3)试问:是否存在实数
,使得当
时,
的最小值是3?如果存在,求出实数
的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com