相关习题
 0  149912  149920  149926  149930  149936  149938  149942  149948  149950  149956  149962  149966  149968  149972  149978  149980  149986  149990  149992  149996  149998  150002  150004  150006  150007  150008  150010  150011  150012  150014  150016  150020  150022  150026  150028  150032  150038  150040  150046  150050  150052  150056  150062  150068  150070  150076  150080  150082  150088  150092  150098  150106  266669 

科目: 来源: 题型:解答题

已知,不等式的解集是
(Ⅰ) 求的解析式;
(Ⅱ) 若对于任意,不等式恒成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集为{x|x≤1或x≥5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+4)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

函数的定义域为,且满足对于任意,有
⑴求的值;
⑵判断的奇偶性并证明;
⑶如果,且上是增函数,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数
⑴若的定义域和值域均是,求实数的值;
⑵若上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家A、B对两种型号的电视机的投放金额分别为p、q万元,农民购买电视机获得的补贴分别为p、lnq万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:).

查看答案和解析>>

科目: 来源: 题型:解答题

已知奇函数f(x)=
(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象;
(2)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(≥10)层,则每平方米的平均建筑费用为560+48单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目: 来源: 题型:解答题

已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(I)求f(x)的解析式;
(II)已知k的取值范围为[,+∞),则是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时,超过部分每吨5元,当用水超过15吨时,超过部分每吨10元。
(1)求水费y(元)关于用水量x(吨)之间的函数关系式;
(2)若某户居民某月所交水费为93元,试求此用户该月的用水量。

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数
(1)在如图给定的直角坐标系内画出的图像;

(2)写出的单调递增区间及值域;
(3)求不等式的解集.

查看答案和解析>>

同步练习册答案