相关习题
 0  150228  150236  150242  150246  150252  150254  150258  150264  150266  150272  150278  150282  150284  150288  150294  150296  150302  150306  150308  150312  150314  150318  150320  150322  150323  150324  150326  150327  150328  150330  150332  150336  150338  150342  150344  150348  150354  150356  150362  150366  150368  150372  150378  150384  150386  150392  150396  150398  150404  150408  150414  150422  266669 

科目: 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目: 来源: 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

已知的图像过原点,且在点处的切线与轴平行,对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

函数的两个极值点.
(1)试确定常数的值;
(2)试判断是函数的极大值点还是极小值点,并求出相应极值.

查看答案和解析>>

科目: 来源: 题型:解答题

近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?

查看答案和解析>>

科目: 来源: 题型:解答题

已知二次函数满足:①在时有极值;②图像过点,且在该点处的切线与直线平行.
(1)求的解析式;
(2)求函数的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数
(1)若是函数的极值点,求曲线在点处的切线方程;
(2)若函数上为单调增函数,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函数f(x)的极值;
⑵设g(x)=a(x-1)ex-f(x).
①当a=1时,对任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②设g′(x)为g(x)的导函数.若存在x>1,使g(x)+g′(x)=0成立,求的取值范围.

查看答案和解析>>

同步练习册答案