科目: 来源: 题型:解答题
(14分)(2011•陕西)设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与
的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<
对任意x>0成立.
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)(2011•陕西)如图,从点P1(0,0)做x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2,再从P2做x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2…;Pn,Qn,记Pk点的坐标为(xk,0)(k=1,2,…,n).![]()
(Ⅰ)试求xk与xk﹣1的关系(2≤k≤n);
(Ⅱ)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
查看答案和解析>>
科目: 来源: 题型:解答题
(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[
,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.
查看答案和解析>>
科目: 来源: 题型:解答题
某分公司经销某种品牌产品,每件产品的成本为
元,并且每件产品需向总公司交
元的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求该分公司一年的利润
(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润
最大?并求出
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com