科目: 来源: 题型:解答题
已知函数
,
,其中
且
.
(Ⅰ) 当
,求函数
的单调递增区间;
(Ⅱ)若
时,函数
有极值,求函数
图象的对称中心的坐标;
(Ⅲ)设函数
(
是自然对数的底数),是否存在a使
在
上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
某地区注重生态环境建设,每年用于改造生态环境总费用为
亿元,其中用于风景区改造为
亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用
随每年改造生态环境总费用
增加而增加;②每年改造生态环境总费用至少
亿元,至多
亿元;③每年用于风景区改造费用
不得低于每年改造生态环境总费用
的15%,但不得高于每年改造生态环境总费用
的25%.
若
,
,请你分析能否采用函数模型y=
作为生态环境改造投资方案.
查看答案和解析>>
科目: 来源: 题型:解答题
已知
.
(1)曲线y=f(x)在x=0处的切线恰与直线
垂直,求
的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数
.
(I) 当
,求
的最小值;
(II) 若函数
在区间
上为增函数,求实数
的取值范围;
(III)过点
恰好能作函数
图象的两条切线,并且两切线的倾斜角互补,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知a为实数,x=1是函数
的一个极值点。
(Ⅰ)若函数
在区间
上单调递减,求实数m的取值范围;
(Ⅱ)设函数
,对于任意
和
,有不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知曲线
:
.
(Ⅰ)当
时,求曲线
的斜率为1的切线方程;
(Ⅱ)设斜率为
的两条直线与曲线
相切于
两点,求证:
中点
在曲线
上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线
的方程为:
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com