科目: 来源: 题型:解答题
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
.
(Ⅰ)判断函数F(x)=
在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数f(x)=
+3
-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥
+ax+1在x≥
时恒成立,试求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
设函数f(x)=
+
,g(x)=
ln(2ex)(其中e为自然对数的底数)
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由:
3)数列{
}中,a1=1,
=g(
)(n≥2),求证:
<
<
<1且
<
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数f(x)=
-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com