科目: 来源: 题型:解答题
已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=anbn,求数列{cn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数f(x)=
,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求证:数列
是等差数列;
(2)求数列{|bn|}的前n项和Tn.
查看答案和解析>>
科目: 来源: 题型:解答题
(2013·杭州模拟)已知数列{an}的前n项和Sn=-an-
n-1+2(n∈N*),数列{bn}满足bn=2nan.
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列
的前n项和为Tn,证明:n∈N*且n≥3时,Tn>
.
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.
查看答案和解析>>
科目: 来源: 题型:解答题
(2013·天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式.
(2)求数列{an·bn}的前n项和Dn.
(3)设cn=an·sin2
-bn·cos2
(n∈N*),求数列{cn}的前2n项和T2n.
查看答案和解析>>
科目: 来源: 题型:解答题
设满足以下两个条件得有穷数列
为
阶“期待数列”:
①
,②
.
(1)若等比数列
为
阶“期待数列”,求公比
;
(2)若一个等差数列
既为
阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记
阶“期待数列”
的前
项和为
.
(
)求证:
;
(![]()
)若存在
,使
,试问数列![]()
是否为
阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
在无穷数列
中,
,对于任意
,都有
,
. 设
, 记使得
成立的
的最大值为
.
(1)设数列
为1,3,5,7,
,写出
,
,
的值;
(2)若
为等比数列,且
,求
的值;
(3)若
为等差数列,求出所有可能的数列
.
查看答案和解析>>
科目: 来源: 题型:解答题
在无穷数列
中,
,对于任意
,都有
,
. 设
, 记使得
成立的
的最大值为
.
(1)设数列
为1,3,5,7,
,写出
,
,
的值;
(2)若
为等差数列,求出所有可能的数列
;
(3)设
,
,求
的值.(用
表示)
查看答案和解析>>
科目: 来源: 题型:解答题
(2013•重庆)设数列{an}满足:a1=1,an+1=3an,n∈N+.
(1)求{an}的通项公式及前n项和Sn;
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.
查看答案和解析>>
科目: 来源: 题型:解答题
(2012•广东)设数列{an}的前n项和为Sn,满足
,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
.
查看答案和解析>>
科目: 来源: 题型:解答题
(2011•浙江)已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且
,
,
成等比数列.
(1)求数列{an}的通项公式及Sn;
(2)记An=
+
+
+…+
,Bn=
+
+…+
,当n≥2时,试比较An与Bn的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com