相关习题
 0  152288  152296  152302  152306  152312  152314  152318  152324  152326  152332  152338  152342  152344  152348  152354  152356  152362  152366  152368  152372  152374  152378  152380  152382  152383  152384  152386  152387  152388  152390  152392  152396  152398  152402  152404  152408  152414  152416  152422  152426  152428  152432  152438  152444  152446  152452  152456  152458  152464  152468  152474  152482  266669 

科目: 来源: 题型:解答题

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
 
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.

查看答案和解析>>

科目: 来源: 题型:解答题

已知等比数列{an}的所有项均为正数,首项a1=1,且a4,3a3a5成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1λan}的前n项和为Sn,若Sn=2n-1(n∈N*),求实数λ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列{an}中,a1=1,an+1 (n∈N*).
(1)求数列{an}的通项an
(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλTn对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知正项数列{an},其前n项和Sn满足6Sn+3an+2,且a1a2a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tna1bna2bn-1+…+anb1n∈N*,证明:3Tn+1=2bn+1an+1(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1bnbnbn-1(n≥2,n∈N*),b1=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前n项和Tn.

查看答案和解析>>

科目: 来源: 题型:解答题

在数列中,,设
(1)证明:数列是等比数列;
(2)求数列的前项和
(3)若为数列的前项和,求不超过的最大的整数.

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列{an}的相邻两项anan+1是关于x的方程x2-2nxbn=0的两根,且a1=1.
(1)求证:数列是等比数列;
(2)求数列{an}的前n项和Sn
(3)设函数f(n)=bnt·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知等比数列{an}满足an+1an=9·2n-1n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Snkan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列{an}的前n项和Snn2(n∈N*),等比数列{bn}满足b1a1,2b3b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cnan·bn(n∈N*),求数列{cn}的前n项和Tn.

查看答案和解析>>

科目: 来源: 题型:解答题

定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.

查看答案和解析>>

同步练习册答案