科目: 来源: 题型:解答题
已知曲线
:
,数列
的首项
,且
当
时,点
恒在曲线
上,数列{
}满足![]()
(1)试判断数列
是否是等差数列?并说明理由;
(2)求数列
和
的通项公式;
(3)设数列
满足
,试比较数列
的前
项和
与
的大小.
查看答案和解析>>
科目: 来源: 题型:解答题
已知数列
具有性质:①
为整数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
.
(1)若
为偶数,且
成等差数列,求
的值;
(2)设
(
且
N),数列
的前
项和为
,求证:
;
(3)若
为正整数,求证:当
(
N)时,都有
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知
,数列
满足
,数列
满足
;又知数列
中,
,且对任意正整数
,
.
(Ⅰ)求数列
和数列
的通项公式;
(Ⅱ)将数列
中的第
项,第
项,第
项,……,第
项,……删去后,剩余的项按从小到大的顺序排成新数列
,求数列
的前
项和.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数f(x)的图象经过点(1,λ),且对任意x∈R,
都有f(x+1)=f(x)+2.数列{an}满足
.
(1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n;
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知数列{an}中,a2=1,前n项和为Sn,且
.
(1)求a1,a3;
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设
,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知正项数列
的前
项和为
,且
.
(1)求
的值及数列
的通项公式;
(2)求证:![]()
;
(3)是否存在非零整数
,使不等式![]()
对一切
都成立?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。下图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14个数与第15个数的比为
,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35。显然,1+3+6+10+15=35。事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数。试用含有m、k
的数学公式表示上述结论,并给予证明。![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com