相关习题
 0  152447  152455  152461  152465  152471  152473  152477  152483  152485  152491  152497  152501  152503  152507  152513  152515  152521  152525  152527  152531  152533  152537  152539  152541  152542  152543  152545  152546  152547  152549  152551  152555  152557  152561  152563  152567  152573  152575  152581  152585  152587  152591  152597  152603  152605  152611  152615  152617  152623  152627  152633  152641  266669 

科目: 来源: 题型:解答题

已知数列{}的前项和为  
(1)求证:数列是等比数列;
(2)设数列{}的前项和为,求 。

查看答案和解析>>

科目: 来源: 题型:解答题

已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(1)求的通项公式.
(2)设,数列的前项和为,求证:

查看答案和解析>>

科目: 来源: 题型:解答题

已知曲线,数列的首项,且
时,点恒在曲线上,数列{}满足
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列的通项公式;
(3)设数列满足,试比较数列的前项和的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,
;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

科目: 来源: 题型:解答题

已知,数列满足,数列满足;又知数列中,,且对任意正整数.
(Ⅰ)求数列和数列的通项公式;
(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后,剩余的项按从小到大的顺序排成新数列,求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:解答题

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,
都有f(x+1)=f(x)+2.数列{an}满足
(1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

在数列中,
(Ⅰ)求数列的前项和
(Ⅱ)若存在,使得成立,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知数列{an}中,a2=1,前n项和为Sn,且
(1)求a1,a3
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题


已知正项数列的前项和为,且 .
(1)求的值及数列的通项公式;
(2)求证:
(3)是否存在非零整数,使不等式
对一切都成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。下图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14个数与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35。显然,1+3+6+10+15=35。事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数。试用含有m、k的数学公式表示上述结论,并给予证明。

查看答案和解析>>

同步练习册答案