科目: 来源: 题型:解答题
数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2?bn=1,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
查看答案和解析>>
科目: 来源: 题型:解答题
定义数列
,(例如
时,
)满足
,且当
(
)时,
.令
.
(1)写出数列
的所有可能的情况;(5分)
(2)设
,求
(用![]()
的代数式来表示);(5分)
(3)求
的最大值.(6分)
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分16分)数列
的前
项和记为
,且满足
.
(1)求数列
的通项公式;
(2)求和
;
(3)设有
项的数列
是连续的正整数数列,并且满足:
.
问数列
最多有几项?并求这些项的和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com