科目: 来源: 题型:解答题
某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).![]()
(1)若设休闲区的长和宽的比
=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知小矩形花坛ABCD中,AB=3 m,AD=2 m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.
(1)要使矩形AMPN的面积大于32 m2,AN的长应在什么范围内?
(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM,AN的长度;若不存在,说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
某小区想利用一矩形空地
建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中
,
,且
中,
,经测量得到
.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点
作一直线交
于
,从而得到五边形
的市民健身广场,设
.
(1)将五边形
的面积
表示为
的函数;
(2)当
为何值时,市民健身广场的面积最大?并求出最大面积.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
已知定点F(0,1)和直线
:y=-1,过定点F与直线
相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线
交动点C的轨迹于两点P、Q,交直线
于点R,求
·
的最小值;
(3)过点F且与
垂直的直线
交动点C的轨迹于两点R、T,问四边形PRQT的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com