相关习题
 0  153302  153310  153316  153320  153326  153328  153332  153338  153340  153346  153352  153356  153358  153362  153368  153370  153376  153380  153382  153386  153388  153392  153394  153396  153397  153398  153400  153401  153402  153404  153406  153410  153412  153416  153418  153422  153428  153430  153436  153440  153442  153446  153452  153458  153460  153466  153470  153472  153478  153482  153488  153496  266669 

科目: 来源: 题型:解答题

如图:已知长方体的底面是边长为的正方形,高的中点,交于点.
(1)求证:平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.
(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S
(1)证明:中截面DEFG是梯形;
(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V=S﹣h来估算.已知V=(d1+d2+d3)S,试判断V与V的大小关系,并加以证明.

查看答案和解析>>

科目: 来源: 题型:解答题

(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知
(1)求证:AC⊥平面VOD;
(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(1)求证:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.

(1)求证:DC平面ABC;     
(2)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三角形中,是边长为的正方形,平面 ⊥底面,若分别是的中点.
(1)求证:∥底面
(2)求证:⊥平面
(3)求几何体的体积.

查看答案和解析>>

同步练习册答案