科目: 来源: 题型:解答题
(本题满分10分)如图,已知四棱锥
底面
为菱形,
平面
,
,
分别是
、
的中点.
(1)证明:![]()
(2)设
, 若
为线段
上的动点,
与平面
所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)一个圆锥,它的底面直径和高均为
.
(1)求这个圆锥的表面积和体积.
(2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分13分)如图,圆柱
内有一个三棱柱
,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)设
,在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
.
(ⅰ)当点C在圆周上运动时,求
的最大值;
(ii)记平面
与平面
所成的角为
,当
取最大值时,求
的值.
查看答案和解析>>
科目: 来源: 题型:解答题
(14分)如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为
m,
m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕
,
.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).![]()
(1)求S关于x的函数关系式及该函数的定义域;
(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)
某建筑物的上半部分是多面体
, 下半部分是长方体
(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.![]()
![]()
(Ⅰ)求直线
与平面
所成角的正弦值;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)求该建筑物的体积.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分15分) 如图,四边形
中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若已知二面角
的余弦值为
,求
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com