科目: 来源: 题型:解答题
(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=
。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA1平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD‘
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
求二面角E-AF-C的余弦值![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分14分)如图,在四棱锥
中,平面
平面
,
为等边三角形,底面
为菱形,
,
为
的中点,
。
(1)求证:
平面
;
(2) 求四棱锥
的体积
(3)在线段
上是否存在点
,使
平面
; 若存在,求出
的值。
查看答案和解析>>
科目: 来源: 题型:解答题
如图4,已知平面
是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线
的中点,已知![]()
(I))求证:
⊥平面
;
(II)求二面角
的余弦值.
(Ⅲ)求三棱锥
的体积. ![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知三棱柱
的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论
取何值,总有
;
(Ⅱ)当
取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点
,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com