科目: 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点![]()
(1)求证:AN∥平面 MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在四棱锥
中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(1)求证:
平面
;
(2)侧棱
上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(3)求二面角
的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图1,在直角梯形
中,
,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:
∥平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,点
为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.![]()
(1) 求证:
;
(2) 在任意
中有余弦定理:
.
拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明
查看答案和解析>>
科目: 来源: 题型:解答题
如图,三棱柱
的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点。![]()
![]()
(I)求证:B1C//平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目: 来源: 题型:解答题
已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com