相关习题
 0  153548  153556  153562  153566  153572  153574  153578  153584  153586  153592  153598  153602  153604  153608  153614  153616  153622  153626  153628  153632  153634  153638  153640  153642  153643  153644  153646  153647  153648  153650  153652  153656  153658  153662  153664  153668  153674  153676  153682  153686  153688  153692  153698  153704  153706  153712  153716  153718  153724  153728  153734  153742  266669 

科目: 来源: 题型:解答题

已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点

(1)求证:AN∥平面 MBD;  
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,矩形中,平面上的点,
平面
(1)求证:平面
(2)求证:平面
(3)求三棱锥的体积。

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图1,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,点为斜三棱柱的侧棱上一点,于点于点.

(1) 求证:
(2) 在任意中有余弦定理:.
拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,丄平面.
(Ⅰ)证明:
(Ⅱ)求二面角的正弦值;
(Ⅲ)求三棱锥外接球的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点。


(I)求证:B1C//平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在直三棱柱中,分别为的中点.

(1)求证:平面;(5分)
(2)求三棱锥的体积.(7分)

查看答案和解析>>

同步练习册答案