相关习题
 0  153563  153571  153577  153581  153587  153589  153593  153599  153601  153607  153613  153617  153619  153623  153629  153631  153637  153641  153643  153647  153649  153653  153655  153657  153658  153659  153661  153662  153663  153665  153667  153671  153673  153677  153679  153683  153689  153691  153697  153701  153703  153707  153713  153719  153721  153727  153731  153733  153739  153743  153749  153757  266669 

科目: 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.

查看答案和解析>>

科目: 来源: 题型:解答题

已知正四棱柱中,的中点.
(1)求证:平面
(2)求证:
(3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.

(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,长方体中,,G是上的动点。
(l)求证:平面ADG
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,为正三角形,且平面平面

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面
(Ⅰ)若分别为中点,求证:∥平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面

查看答案和解析>>

同步练习册答案