科目: 来源: 题型:解答题
如图,在四棱锥P-ABCD中,ABCD为平行四边形,
平面PAB,
,
.M为PB的中点.![]()
(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在四棱锥
中,底面
是矩形,
,
,
,
是棱
的中点.![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)在棱
上是否存在一点
,使得平面
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图1,在Rt△ABC中,∠ABC=90°,D为AC中点,
于
(不同于点
),延长AE交BC于F,将△ABD沿BD折起,得到三棱锥
,如图2所示.![]()
(1)若M是FC的中点,求证:直线
//平面
;
(2)求证:BD⊥
;
(3)若平面
平面
,试判断直线
与直线CD能否垂直?并说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD是
,边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.![]()
(1)证明:DN//平面PMB;
(2)证明:平面PMB
平面PAD.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,三棱柱
的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。![]()
(1)求证:
平面
;
(2)求二面角
的大小;
(3)求直线
与平面
所成的角的正弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
在四棱柱
中,
底面
,底面
为菱形,
为
与
交点,已知
,
.![]()
(1)求证:
平面
;
(2)求证:
∥平面
;
(3)设点
在
内(含边界),且![]()
,说明满足条件的点
的轨迹,并求
的最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.![]()
(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图一,平面四边形
关于直线
对称,![]()
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各小题:![]()
(1)求
两点间的距离;
(2)证明:
平面
;
(3)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com