相关习题
 0  153590  153598  153604  153608  153614  153616  153620  153626  153628  153634  153640  153644  153646  153650  153656  153658  153664  153668  153670  153674  153676  153680  153682  153684  153685  153686  153688  153689  153690  153692  153694  153698  153700  153704  153706  153710  153716  153718  153724  153728  153730  153734  153740  153746  153748  153754  153758  153760  153766  153770  153776  153784  266669 

科目: 来源: 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结 (如图2).

(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,平面是矩形,,点的中点,点是边上的动点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)当点的中点时,试判断与平面的位置关系,并说明理由;
(Ⅲ)证明:无论点在边的何处,都有.

查看答案和解析>>

科目: 来源: 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目: 来源: 题型:解答题

直三棱柱中,,D为BC中点.

(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.

(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.

查看答案和解析>>

同步练习册答案