相关习题
 0  153594  153602  153608  153612  153618  153620  153624  153630  153632  153638  153644  153648  153650  153654  153660  153662  153668  153672  153674  153678  153680  153684  153686  153688  153689  153690  153692  153693  153694  153696  153698  153702  153704  153708  153710  153714  153720  153722  153728  153732  153734  153738  153744  153750  153752  153758  153762  153764  153770  153774  153780  153788  266669 

科目: 来源: 题型:解答题

如图所示的四棱锥中,底面为菱形,平面 的中点,

求证:(I)平面; (II)平面⊥平面.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

查看答案和解析>>

科目: 来源: 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.

(1)当E点是AB中点时,求证:直线ME‖平面ADD1 A1
(2)若二面角AD1EC的余弦值为.求线段AE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。

(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设的中点分别为.

(1)求证:四点共面;
(2)求证:平面平面
(3)求异面直线所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求证:直线平面
(2)求证:平面平面
(3)求与平面所成的角大小.

查看答案和解析>>

同步练习册答案