相关习题
 0  153610  153618  153624  153628  153634  153636  153640  153646  153648  153654  153660  153664  153666  153670  153676  153678  153684  153688  153690  153694  153696  153700  153702  153704  153705  153706  153708  153709  153710  153712  153714  153718  153720  153724  153726  153730  153736  153738  153744  153748  153750  153754  153760  153766  153768  153774  153778  153780  153786  153790  153796  153804  266669 

科目: 来源: 题型:解答题

如图,在四棱锥中,为平行四边形,且的中点,

(Ⅰ)求证://
(Ⅱ)求三棱锥的高.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,直角梯形中,,过,垂足为.分别是的中点.现将沿折起,使二面角的平面角为.

(1)求证:平面平面
(2)求直线与面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=

(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且

(Ⅰ)求证://侧面
(Ⅱ)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.

(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1
(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的 角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=3(1)BC1.

(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的正切值;
(3)求点B到平面B1GE的距离.

查看答案和解析>>

同步练习册答案