科目: 来源: 题型:解答题
等边三角形
的边长为3,点
、
分别是边
、
上的点,且满足![]()
(如图1).将△
沿
折起到△
的位置,使二面角
成直二面角,连结
、
(如图2).![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图1,四棱锥
中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:
平面
;
(Ⅱ)证明:
∥平面
;
(Ⅲ)线段
上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图1,在直角梯形
中,AD//BC,
=900,BA="BC" 把ΔBAC沿
折起到
的位置,使得点
在平面ADC上的正投影O恰好落在线段
上,如图2所示,点
分别为线段PC,CD的中点.![]()
(I) 求证:平面OEF//平面APD;
(II)求直线CD
与平面POF;
(III)在棱PC上是否存在一点
,使得
到点P,O,C,F四点的距离相等?请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(I)求证:平面
平面
;
(II)求直线
与平面
所成角的正弦值;
(III)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com