相关习题
 0  153647  153655  153661  153665  153671  153673  153677  153683  153685  153691  153697  153701  153703  153707  153713  153715  153721  153725  153727  153731  153733  153737  153739  153741  153742  153743  153745  153746  153747  153749  153751  153755  153757  153761  153763  153767  153773  153775  153781  153785  153787  153791  153797  153803  153805  153811  153815  153817  153823  153827  153833  153841  266669 

科目: 来源: 题型:解答题

如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."

(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.

(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台。
如图,在四棱台中,下底是边长为的正方形,上底是边长为1的正方形,侧棱⊥平面.

(Ⅰ)求证:平面
(Ⅱ)求平面与平面夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,三棱锥中,底面,点的中点.

(1)求证:侧面平面
(2)若异面直线所成的角为,且
求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图:四棱锥中,,,

(Ⅰ)证明: 平面
(Ⅱ)在线段上是否存在一点,使直线与平面成角正弦值等于,若存在,指出点位置,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于该半圆所在的平面,且

(Ⅰ)求证:
(Ⅱ)设平面与半圆弧的另一个交点为
①试证:
②若,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

如图1,在Rt中, D、E分别是上的点,且.将沿折起到的位置,使,如图2.

(Ⅰ)求证:平面
(Ⅱ)若,求与平面所成角的正弦值;

查看答案和解析>>

同步练习册答案