科目: 来源: 题型:解答题
(本小题满分12分)
在四棱柱
中,底面
是直角梯形,AB∥CD,∠ABC=
,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD![]()
(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求
的值。若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图所示,等腰△ABC的底边AB=6
,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记
,用
表示四棱锥P-ACFE的体积.![]()
(Ⅰ)求
的表达式;
(Ⅱ)当x为何值时,
取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
查看答案和解析>>
科目: 来源: 题型:解答题
一个多面体的直观图和三视图如图所示,其中
、
分别是
、
的中点,
是
上的一动点,主视图与俯视图都为正方形。![]()
![]()
⑴求证:
;
⑵当
时,在棱
上确定一点
,使得
∥平面
,并给出证明。
⑶求二面角
的平面角余弦值。
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分13分)如图所示,四棱锥
中,底面
是边长为2的菱形,
是棱
上的动点.![]()
(Ⅰ)若
是
的中点,求证:
//平面
;
(Ⅱ)若
,求证:
;
(III)在(Ⅱ)的条件下,若
,求四棱锥
的体积.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,
BAD=90°,PA
底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.![]()
(Ⅰ)求证:PB
平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.![]()
(1) 求证:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com