相关习题
 0  153677  153685  153691  153695  153701  153703  153707  153713  153715  153721  153727  153731  153733  153737  153743  153745  153751  153755  153757  153761  153763  153767  153769  153771  153772  153773  153775  153776  153777  153779  153781  153785  153787  153791  153793  153797  153803  153805  153811  153815  153817  153821  153827  153833  153835  153841  153845  153847  153853  153857  153863  153871  266669 

科目: 来源: 题型:解答题

(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF ∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)如图几何体,是矩形,
上的点,且

(1)求证:
(2)求证:

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分) 如图,在直三棱柱中,分别是的中点,点上,
 
求证:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分12分)如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.

(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,的交点,平面是侧棱的中点,异面直线所成角的大小是60.

(Ⅰ)求证:直线平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在长方体 中点.

(1)求证:
(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)如图所示,四棱锥中,为正方形, 分别是线段的中点. 求证:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为 已知

(Ⅰ)设点的中点,证明:平面
(Ⅱ)求二面角的大小;

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,=2=2,中点.
(Ⅰ) 证明
(Ⅱ) 若二面角的平面角的余弦值为,求的长.

查看答案和解析>>

同步练习册答案