科目: 来源: 题型:解答题
(12分)(理)如图9-6-6,矩形ABCD中,A
B=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
⊥
,说明理由.
(2)问当Q点惟一,且cos<
,
>=
时,求点P的位置.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(14分)如图,圆柱
内有一个三棱柱
,三棱柱的 底面为圆柱
底面的内接三角形,且
是圆
的直径。
(I)证明:平面
平面
;
(II)设
,在圆
柱
内随机选取一点,记该点取自三棱柱
内的概率为
。
(i)当点
在圆周上运动时,求
的最大值;
(ii)如果平面
与平面
所成的角为
。当
取最大值时,求![]()
的值。
查看答案和解析>>
科目: 来源: 题型:解答题
(14分)如图,四棱锥P—ABCD的底面是A
B=2,BC=
的矩形,侧面PAB
是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E
使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。![]()
![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求证EFGH为矩形;
(2)点E在什么位置,SEFGH最大?
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)在平面α内有△ABC,在平面α外有点S,斜线SA⊥AC,SB⊥BC,且
斜线SA、SB与平面α所成角相等。
(1)求证:AC=BC
(2)又设点S到α的距离为4cm,AC⊥BC且AB=6cm,求S与AB的距离。
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,
,AA1=4,点D是AB的中点
(Ⅰ)求证:
AC⊥BC1;
(Ⅱ)求二面角
的平面角的正切值.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)如图,在多面体ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值。![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)如图,在多面体ABDEC中,AE
平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(I)求证:EF//平面ABC;
(II)求证:
平面BCD;
(III)求多面体ABDEC的体积。![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com