科目: 来源: 题型:解答题
如图,在棱长为2的正方体
中,
分别是棱
的中点,点
分别在棱
,
上移动,且
.
当
时,证明:直线
平面
;
是否存在
,使平面
与面
所成的二面角为直二面角?若存在,求出
的值;若不存在,说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,正方体
的边长为2,
,
分别为
,
的中点,在五棱锥
中,
为棱
的中点,平面
与棱
,
分别交于
,
.
(1)求证:
;
(2)若
底面
,且
,求直线
与平面
所成角的大小,并求线段
的长.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,四棱柱
中,![]()
底面
.四边形
为梯形,
,且
.过
三点的平面记为
,
与
的交点为
.
(1)证明:
为
的中点;
(2)求此四棱柱被平面
所分成上下两部分的体积之比;
(3)若![]()
,
,梯形
的面积为6,求平面
与底面
所成二面角大小.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.![]()
(1)证明:MF⊥BD;
(2)若二面角A-BF-D的平面角的余弦值为
,求AB的长.
查看答案和解析>>
科目: 来源: 题型:解答题
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.![]()
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com