相关习题
 0  153742  153750  153756  153760  153766  153768  153772  153778  153780  153786  153792  153796  153798  153802  153808  153810  153816  153820  153822  153826  153828  153832  153834  153836  153837  153838  153840  153841  153842  153844  153846  153850  153852  153856  153858  153862  153868  153870  153876  153880  153882  153886  153892  153898  153900  153906  153910  153912  153918  153922  153928  153936  266669 

科目: 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在长方体ABCD­A1B1C1D1中,已知AB=4,AD=3,AA1=2,EF分别是棱ABBC上的点,且EBFB=1.
 
(1)求异面直线EC1FD1所成角的余弦值;
(2)试在面A1B1C1D1上确定一点G,使DG⊥平面D1EF.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中点.

(1)求证:A1BAM
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目: 来源: 题型:解答题

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).

(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

同步练习册答案