相关习题
 0  153743  153751  153757  153761  153767  153769  153773  153779  153781  153787  153793  153797  153799  153803  153809  153811  153817  153821  153823  153827  153829  153833  153835  153837  153838  153839  153841  153842  153843  153845  153847  153851  153853  153857  153859  153863  153869  153871  153877  153881  153883  153887  153893  153899  153901  153907  153911  153913  153919  153923  153929  153937  266669 

科目: 来源: 题型:解答题

如图,ABCD是块矩形硬纸板,其中AB=2ADADEDC的中点,将它沿AE折成直二面角D-AE-B.

(1)求证:AD⊥平面BDE
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.

(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCDEBD的中点,GPD的中点,△DAB≌△DCBEAEBAB=1,PA,连接CE并延长交ADF.

(1)求证:AD⊥平面CFG
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.
 
(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,是正方形所在平面外一点,且,若分别是的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.

(1)证明B1C1CE
(2)求二面角B1CEC1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.
 
(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

同步练习册答案