科目: 来源: 题型:解答题
如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.![]()
(1)求证:面PCD⊥面PBD;
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为
?若存在,指出点E在棱PA上的位置,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将△AOD折起,使DB=
.![]()
(1)求证:平面AOD⊥平面ABCO;
(2)求直线BC与平面ABD所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.![]()
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.![]()
(1)求证:B1E⊥AD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角A-B1E-A1的大小为30°,求AB的长.
查看答案和解析>>
科目: 来源: 题型:解答题
已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分别是CE,CF的中点.![]()
(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
AB. ![]()
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.![]()
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为
,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com