相关习题
 0  153748  153756  153762  153766  153772  153774  153778  153784  153786  153792  153798  153802  153804  153808  153814  153816  153822  153826  153828  153832  153834  153838  153840  153842  153843  153844  153846  153847  153848  153850  153852  153856  153858  153862  153864  153868  153874  153876  153882  153886  153888  153892  153898  153904  153906  153912  153916  153918  153924  153928  153934  153942  266669 

科目: 来源: 题型:解答题

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在四棱锥中,底面,底面为正方形,分别是的中点.

(1)求证:
(2)在平面内求一点,使平面,并证明你的结论;
(3)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△分别沿折起,使两点重合于点,连接

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:;
(Ⅱ)当的中点时,求点到面的距离;
(Ⅲ)等于何值时,二面角的大小为.

查看答案和解析>>

科目: 来源: 题型:解答题

在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点.

(1)求异面直线A1E,CF所成的角;
(2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,是边长为3的正方形,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

在如图所示的空间直角坐标系O-xyz中,原点O是BC的中点,A点坐标为,D点在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D点坐标;
(Ⅱ)求的值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

同步练习册答案