相关习题
 0  153755  153763  153769  153773  153779  153781  153785  153791  153793  153799  153805  153809  153811  153815  153821  153823  153829  153833  153835  153839  153841  153845  153847  153849  153850  153851  153853  153854  153855  153857  153859  153863  153865  153869  153871  153875  153881  153883  153889  153893  153895  153899  153905  153911  153913  153919  153923  153925  153931  153935  153941  153949  266669 

科目: 来源: 题型:解答题

(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PAABAD的夹角都等于600PC的中点,设
(1)试用表示出向量
(2)求的长.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中.
(Ⅰ)求的长;
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中点.
(1)求cos()的值;
(2)求证:A1B⊥C1M.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分14分)
ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题14分)
如图2,在四面体中,
(1)设的中点,证明:在上存在一点,使,并计算的值;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

(本题12分)
已知的三个顶点坐标为分别为:试判断的形状。

查看答案和解析>>

同步练习册答案