科目: 来源: 题型:解答题
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.![]()
(1)求实数a,b间满足的等量关系.
(2)求线段PQ长的最小值.
(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.
查看答案和解析>>
科目: 来源: 题型:解答题
过点Q(-2,
)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值.
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设
=
+
,求|
|的最小值(O为坐标原点).
查看答案和解析>>
科目: 来源: 题型:解答题
如图,![]()
在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0.
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
·
=0,求D2+E2-4F的值.
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).![]()
(1)求圆弧C2的方程.
(2)曲线C上是否存在点P,满足PA=
PO?若存在,指出有几个这样的点;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知圆
.
(1)若圆
的切线在
轴和
轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆
外一点
向该圆引一条切线,切点为
,
为坐标原点,且有
,求使
的长取得最小值的点
的坐标.
查看答案和解析>>
科目: 来源: 题型:解答题
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若
·
=-2,求实数k的值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知圆
的方程为:
,直线的方程为
,点
在直线上,过点
作圆
的切线
,切点为
.![]()
(1)若
,求点
的坐标;
(2)若点
的坐标为
,过点
的直线与圆
交于
两点,当
时,求直线
的方程;
(3)求证:经过
(其中点
为圆
的圆心)三点的圆必经过定点,并求出所有定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com