科目: 来源: 题型:解答题
已知椭圆
的右焦点为
,
为上顶点,
为坐标原点,若△
的面积为
,且椭圆的离心率为
.
(1)求椭圆的方程;
(2)是否存在直线
交椭圆于
,
两点, 且使点
为△
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
如图所示,在平面直角坐标系
中,设椭圆
,其中
,过椭圆
内一点![]()
的两条直线分别与椭圆交于点
和
,且满足
,
,其中
为正常数. 当点
恰为椭圆的右顶点时,对应的
.
(1)求椭圆
的离心率;
(2)求
与
的值;
(3)当
变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:
上;
(2)设直线l:
与椭圆W:
有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
的最大值及取得最大值时m的值.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:
上;
(2)设直线l:
与椭圆W:
有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
的最大值及取得最大值时m的值.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
的两个焦点分别为
,且
,点
在椭圆上,且
的周长为6.
(1)求椭圆
的方程;(2)若点
的坐标为
,不过原点
的直线
与椭圆
相交于
不同两点,设线段
的中点为
,且
三点共线.设点
到直线
的距离为
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
在平面直角坐标系xoy中,已知椭圆C:
=1(a>b≥1)的离心率e=
,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.
(1)求椭圆C的方程。
(2)设P为椭圆上一点,且满足
(O为坐标原点),当|AB|<
时,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com