科目: 来源: 题型:解答题
(已知抛物线
(
)的准线与
轴交于点
.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线
(直线与抛物线交于点
,
),使得三角形
的面积
?若存在,请求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个焦点恰好与抛物线
的焦点重合.
求椭圆
的方程;
设椭圆的上顶点为
,过点
作椭圆
的两条动弦
,若直线
斜率之积为
,直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知双曲线
="1"
的两个焦点为
、
,P是双曲线上的一点,
且满足
,
(1)求
的值;
(2)抛物线
的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
查看答案和解析>>
科目: 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为A,在x轴负半轴上有一点B,满足
三点的圆与直线
相切.
(1)求椭圆C的方程;
(2)过右焦点
作斜率为k的直线
与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,椭圆的中心为原点O,长轴在x轴上,离心率
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(2012•广东)在平面直角坐标系xOy中,已知椭圆C:
的离心率
,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(2011•山东)在平面直角坐标系xOy中,已知椭圆
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知双曲线C:
离心率是
,过点
,且右支上的弦
过右焦点
.
(1)求双曲线C的方程;
(2)求弦
的中点
的轨迹E的方程;
(3)是否存在以
为直径的圆过原点O?,若存在,求出直线
的斜率k 的值.若不存在,则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com