科目: 来源: 题型:解答题
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在
轴上的双曲线渐近线方程为
;
(2)点
到双曲线上动点
的距离最小值为
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率e=
,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=
,求直线l的倾斜角.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)经过点M(-2,-1),离心率为
.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1)求椭圆C的方程;
(2)试判断直线PQ的斜率是否为定值,证明你的结论.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
=2
,
·
=
,求椭圆的方程.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.![]()
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,F为椭圆的右焦点,M、N两点在椭圆C上,且
=λ
(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
⊥
;
(2)若当λ=1时,有
·
=
,求椭圆C的方程..
查看答案和解析>>
科目: 来源: 题型:解答题
根据下列条件求椭圆的标准方程:
(1)两准线间的距离为
,焦距为2
;
(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
和
,过P点作长轴的垂线恰好过椭圆的一个焦点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com