科目: 来源: 题型:解答题
已知A,B,C是椭圆W:
+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(13分)已知圆O:x2+y2=3的半径等于椭圆E:
=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线l:y=x-
的距离为
-
,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).![]()
(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目: 来源: 题型:解答题
设椭圆M:
=1(a>
)的右焦点为F1,直线l:x=
与x轴交于点A,若
=2
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求
·
的最大值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知直线l:y=x+
,圆O:x2+y2=5,椭圆E:
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的离心率为
,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.![]()
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,一条准线l:x=2.
(1)求椭圆C的方程;
(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.
①若PQ=
,求圆D的方程;
②若M是l上的动点,求证点P在定圆上,并求该定圆的方程.
查看答案和解析>>
科目: 来源: 题型:解答题
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com