相关习题
 0  154708  154716  154722  154726  154732  154734  154738  154744  154746  154752  154758  154762  154764  154768  154774  154776  154782  154786  154788  154792  154794  154798  154800  154802  154803  154804  154806  154807  154808  154810  154812  154816  154818  154822  154824  154828  154834  154836  154842  154846  154848  154852  154858  154864  154866  154872  154876  154878  154884  154888  154894  154902  266669 

科目: 来源: 题型:解答题

已知命题:方程表示焦点在轴上的双曲线。命题曲线轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。

查看答案和解析>>

科目: 来源: 题型:解答题

如图,设椭圆的离心率,顶点的距离为,为坐标原点.

(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆分别交于两点.
(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知椭圆的离心率是分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点轴上位于右侧的一点,且满足

(1)求椭圆的方程以及点的坐标;
(2)过点轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

已知一条曲线轴右侧,上每一点到点的距离减去它到轴距离的差都是1.
(1)求曲线的方程;
(2)设直线交曲线两点,线段的中点为,求直线的一般式方程.

查看答案和解析>>

科目: 来源: 题型:解答题

已知直线l1:4x-3y+6=0和直线l2x=- (p>2).若拋物线Cy2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于AB两点,其中点Ax轴下方,且=3.求过OAB三点的圆的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,λ,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

同步练习册答案