相关习题
 0  154715  154723  154729  154733  154739  154741  154745  154751  154753  154759  154765  154769  154771  154775  154781  154783  154789  154793  154795  154799  154801  154805  154807  154809  154810  154811  154813  154814  154815  154817  154819  154823  154825  154829  154831  154835  154841  154843  154849  154853  154855  154859  154865  154871  154873  154879  154883  154885  154891  154895  154901  154909  266669 

科目: 来源: 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求之间满足的关系式.

查看答案和解析>>

科目: 来源: 题型:解答题

已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.

(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQBQ与直线x=4分别交于MN两点,直线BM与椭圆的交点为D.求证,ADN三点共线.

查看答案和解析>>

科目: 来源: 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(ab>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知点,动点满足:,且
(1)求动点的轨迹的方程;
(2)已知圆W: 的切线与轨迹相交于P,Q两点,求证:以PQ为直径的圆经过坐标原点.

查看答案和解析>>

科目: 来源: 题型:解答题

已知定点,曲线C是使为定值的点的轨迹,曲线过点.
(1)求曲线的方程;
(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;
(3)设点是曲线上除长轴端点外的任一点,连接,设的角平分线交曲线的长轴于点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知平面五边形关于直线对称(如图(1)),,将此图形沿折叠成直二面角,连接得到几何体(如图(2))

(1)证明:平面
(2)求平面与平面的所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线两点,过点和原点的直线交直线于点,求证:直线平行于轴.

查看答案和解析>>

科目: 来源: 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

同步练习册答案