科目: 来源: 题型:解答题
已知椭圆
两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在斜率为
的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C:![]()
的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
查看答案和解析>>
科目: 来源: 题型:解答题
已知抛物线C:
,定点M(0,5),直线
与
轴交于点F,O为原点,若以OM为直径的圆恰好过
与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于
,求证: 抛物线C分别过
两点的切线的交点Q在一条定直线上运动.
查看答案和解析>>
科目: 来源: 题型:解答题
在平面直角坐标系
中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
相交于
、
两点,若
(
为坐标原点),试判断直线
与圆
的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:解答题
在平面直角坐标系
中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
是椭圆
在第一象限上的任一点,连接
,过
点作斜率为
的直线
,使得
与椭圆
有且只有一个公共点,设直线
的斜率分别为
,
,试证明
为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作
,设
交
于点
,
证明:当点
在椭圆上移动时,点
在某定直线上.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆C的两个焦点是(0,-
)和(0,
),并且经过点
,抛物线E的顶点在坐标原点,焦点F恰好是椭圆C的右顶点.
(Ⅰ)求椭圆C和抛物线E的标准方程;
(Ⅱ)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
:
(
)过点
,且椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若动点
在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线
与椭圆E相交于P,Q两点,且
的最大值为
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设
,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知线段MN的两个端点M、N分别在
轴、
轴上滑动,且
,点P在线段MN上,满足![]()
,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与
的值的关系;
(2)当
时,设A、B是曲线W与
轴、
轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,已知椭圆
的右顶点为A(2,0),点P(2e,
)在椭圆上(e为椭圆的离心率).![]()
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足
,且
,求实数λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com