科目: 来源: 题型:解答题
已知点
是椭圆
的右焦点,点
、
分别是
轴、
轴上的动点,且满足
.若点
满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
、
两点,直线
、
与直线
分别交
于点
、
(
为坐标原点),试判断
是否为定值?若是,求出这个定值;若不是,
请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
:
的一个焦点为
且过点
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交
轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.
证明:线段OT的长为定值,并求出该定值.
查看答案和解析>>
科目: 来源: 题型:解答题
如图,椭圆
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线与椭圆交于
,而与抛物线交于
两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过
的直线与椭圆
相交于两点
和
,
设
为椭圆
上一点,且满足
(
为坐标原点),求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知中心在原点
,焦点在x轴上,离心率为
的椭圆过点(
,
).![]()
(1)求椭圆的方程;
(2)设不过原点
的直线与该椭圆交于
、
两点,满足直线
,
,
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
在直角坐标系
中,曲线
的参数方程为
(
为参数)
是
上的动点,
点满足
,
点的轨迹为曲线
.
(1)求
的方程;
(2)在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
的异于极点的交点为
,与
的异于极点的交点为
,求
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知
是椭圆的左、右焦点,O为坐标原点,点P
在椭圆上,线段
与y轴的交点M满足![]()
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以
为直径的圆,直线
:
与圆相切,并与椭圆交于不同的两点
,当
,且满足
时,求直线
的方程。
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
的离心率为
,![]()
轴被抛物线
截得的线段长等于
的长半轴长.
(1)求
的方程;
(2)设
与
轴的交点为
,过坐标原点
的直线![]()
与
相交于
两点,直线
分别与
相交于
.
①证明:
为定值;
②记
的面积为
,试把
表示成
的函数,并求
的最大值.
查看答案和解析>>
科目: 来源: 题型:解答题
(1)设椭圆
:
与双曲线
:
有相同的焦点
,
是椭圆
与双曲线
的公共点,且
的周长为
,求椭圆
的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆
”的方程为
.设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧
:
(
)与第(1)小题椭圆弧
:
(
)所合成的封闭曲线为“盾圆
”.设过点
的直线与“盾圆
”交于
两点,
,
且
(
),试用
表示
;并求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆
过点
,且它的离心率
.直线
与椭圆
交于
、
两点.![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当
时,求证:
、
两点的横坐标的平方和为定值;
(Ⅲ)若直线
与圆
相切,椭圆上一点
满足
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com