科目: 来源: 题型:解答题
(本小题满分14分)
设椭圆![]()
(
)的两个焦点是
和
(
),且椭圆
与圆
有公共点.
(1)求
的取值范围;
(2)若椭圆上的点到焦点的最短距离为
,求椭圆的方程;
(3)对(2)中的椭圆
,直线![]()
(
)与
交于不同的两点
、
,若线段
的垂直平分线恒过点
,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题15分)已知点
是椭圆E:
(
)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,
(
).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分12分)设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且
?若存在,写出该圆的方程,若不存在说明理由。
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分12分)
双曲线的中心为原点
,焦点在
轴上,两条渐近线分别为
,经过右焦点
垂直于
的直线分别交
于
两点.已知
成等差数列,且
与
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设
被双曲线所截得的线段的长为4,求双曲线的方程.
查看答案和解析>>
科目: 来源: 题型:解答题
已知m>1,直线
,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点
时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A![]()
、△B![]()
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.![]()
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)
如图,
为椭圆
上的一个动点,弦
、
分别过焦点
、
,当
垂直于
轴时,恰好有![]()
![]()
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
.
①当
点恰为椭圆短轴的一个端点时,求
的值;
②当
点为该椭圆上的一个动点时,试判断
是否为定值?
若是,请证明;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
椭圆C:
=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足![]()
=0,点N( 0,3 )到椭圆上的点的最远距离为5![]()
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求![]()
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com