科目: 来源: 题型:解答题
(本小题12分) 将圆O:
上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线
、抛物线
的焦点是直线y=x-1与x轴的交点.
(1)求
,
的标准方程;
(2)请问是否存在直线
满足条件:① 过
的焦点
;②与
交于不同两
点
,
,且满足
?若存在,求出直线
的方程; 若不存在,说明
理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)
已知双曲线
的离心率为
,且过点P(
).
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A,B,且
(其中O为原点),求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)
已知焦点在
轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线
对称.
(1)求双曲线C的方程;
(2)设直线
与双曲线C的左支交于A,B两点,另一直线
经过M(-2,0)及AB的中点,求直线
在
轴上的截距b的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分12分)
如图椭圆
的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为
, 求椭圆的方程.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
已知椭圆G:
的右焦点F为
,G上的点到点F的最大距离为
,斜率为1的直线
与椭圆G交与
、
两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程;
(2)求
的面积。
查看答案和解析>>
科目: 来源: 题型:解答题
分别是椭圆
:
+
=1(![]()
)的左、右焦点,
是椭圆
的上顶点,
是直线
与椭圆
的另一个交点,![]()
![]()
=60°.
(1)求椭圆
的离心率;
(2)已知△![]()
的面积为40
,求a, b 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com