科目: 来源: 题型:解答题
(12分)双曲线
(a>1,b>0)的焦距为2c,直线
过点(a,0)和(0,b),且点(1,0)到直线
的距离与点(-1,0)到直线
的距离之和s≥
c.求双曲线的离心率e的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
(12分) 在直角坐标系
中,点
到点
,
的距离之和是
,点
的轨迹是
,直线
与轨迹
交于不同的两点
和
.⑴求轨迹
的方程;⑵是否存在常数
,
?若存在,求出
的值;若不存在,请说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
(12分)已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点.求证:(1)x1x2为定值;(2)
+
为定值.
查看答案和解析>>
科目: 来源: 题型:解答题
(12分) 双曲线的两条渐近线的方程为y=±x,且经过点(3,-2).(1)求双曲线的方程;(2)过双曲线的右焦点F且倾斜角为60°的直线交双曲线于A、B两点,求|AB|.
查看答案和解析>>
科目: 来源: 题型:解答题
已知抛物线
的准线为
,焦点为
,圆
的圆心在
轴的正半轴上,且与
轴相切,过原点
作倾斜角为
的直线
,交![]()
于点
,交圆
于另一点
,且![]()
(1)求圆
和抛物线C的方程;
(2)若
为抛物线C上的动点,求
的最小值;
(3)过
上的动点Q向圆
作切线,切点为S,T,
求证:直线ST
恒过一个定点,并求该定点的坐标.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;![]()
(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:解答题
(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图
2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则
轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐
标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点
,过点
作
轴的垂线,垂足为
,过点
作直线
,交线段
于点
,连接
,使
~
,若存在,求出点
的坐标;若不存在,说明理由.
图1 图2
图3
查看答案和解析>>
科目: 来源: 题型:解答题
(本题满分15分)已知A(1,1)是椭圆
(
)上一点,F1,F2
是椭圆上的两焦点,且满足
.
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为
,若存在常数
使
/,求直线CD的斜率.
查看答案和解析>>
科目: 来源: 题型:解答题
21.(本小题满分14分)
已知直线
过抛物线
的焦点
且与抛物线相交于两点
,自
向准线
作垂线,垂足分别为
.
(1)求抛物线
的方程;
(2)证明:无论
取何实数时,
,
都是定值;
(3)记
的面积分别为
,试判断
是否成立,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:解答题
22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点
到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆
交于A、C、D、B四点,试证明
为定值;
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com