相关习题
 0  155354  155362  155368  155372  155378  155380  155384  155390  155392  155398  155404  155408  155410  155414  155420  155422  155428  155432  155434  155438  155440  155444  155446  155448  155449  155450  155452  155453  155454  155456  155458  155462  155464  155468  155470  155474  155480  155482  155488  155492  155494  155498  155504  155510  155512  155518  155522  155524  155530  155534  155540  155548  266669 

科目: 来源: 题型:解答题

学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价
该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为
“优秀”的人数,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润元,未售出的产品,每t亏损元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。经销商为下一个销售季度购进了t该农产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内销商该农产品的利润。

(1)将表示为的函数;(2)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润元,未售出的产品,每t亏损元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。经销商为下一个销售季度购进了t该农产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内销商该农产品的利润。

(1)将表示为的函数;
(2)根据直方图估计利润不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若,则取,且的概率等于需求量落入的概率),求利润的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.

(1)求图中实数a的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

从某校高二年级名男生中随机抽取名学生测量其身高,据测量被测学生的身高全部在之间.将测量结果按如下方式分成组:第一组,第二组, ,第八组,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.
频率分布表如下:

分组
频数
频率
频率/组距
 
 
 
 








 
 
 
 
频率分布直方图如下:

(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为,求满足:的事件的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:

 
患病
未患病
总计
没服用药
20
30
50
服用药


50
总计


100
设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未患病数为,工作人员曾计算过.
(1)求出列联表中数据的值; 
(2)能够以99%的把握认为药物有效吗?参考公式:,其中
①当K2≥3.841时有95%的把握认为有关联;
②当K2≥6.635时有99%的把握认为有关联.

查看答案和解析>>

科目: 来源: 题型:解答题

为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表

上网时间(分钟)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人数
5
25
30
25
15
表2:女生上网时间与频数分布表
上网时间(分钟)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人数
10
20
40
20
10
(1)从这100名男生中任意选出3人,求其中恰有1人上网时间少于60分钟的概率;
(2)完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:K2
P(K2≥k0)
0.100
0.050
0.025
0.010
0.005
k0
2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目: 来源: 题型:解答题

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5(微克/立方米)
频数(天)
频率
第一组
(0,15]
4
0.1
第二组
(15,30]
12
0.3
第三组
(30,45]
8
0.2
第四组
(45,60]
8
0.2
第五组
(60,75]
4
0.1
第六组
(75,90)
4
0.1
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:解答题

某种报纸,进货商当天以每份1元从报社购进,以每份2元售出.若当天卖不完,剩余报纸报社以每份0.5元的价格回收.根据市场统计,得到这个季节的日销售量X(单位:份)的频率分布直方图(如图所示),将频率视为概率.
 
(1)求频率分布直方图中a的值;
(2)若进货量为n(单位:份),当nX时,求利润Y的表达式;
(3)若当天进货量n=400,求利润Y的分布列和数学期望E(Y)(统计方法中,同一组数据常用该组区间的中点值作为代表).

查看答案和解析>>

科目: 来源: 题型:解答题

某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,下表是年龄的频率分布表.


(1)求正整数的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

同步练习册答案