相关习题
 0  155790  155798  155804  155808  155814  155816  155820  155826  155828  155834  155840  155844  155846  155850  155856  155858  155864  155868  155870  155874  155876  155880  155882  155884  155885  155886  155888  155889  155890  155892  155894  155898  155900  155904  155906  155910  155916  155918  155924  155928  155930  155934  155940  155946  155948  155954  155958  155960  155966  155970  155976  155984  266669 

科目: 来源: 题型:解答题

某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:

品牌


首次出现故障时间
x年







空调数量(台)
1
2
4
43
2
3
45
每台利润(千元)
1
2
2.5
2.7
1.5
2.6
2.8
 
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率;
(2)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列;
(3)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由。

查看答案和解析>>

科目: 来源: 题型:解答题

春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。
⑴)试求选出的3种商品中至少有一种是家电的概率;
⑵商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为元的奖金;若中两次奖,则共获得数额为元的奖金;若中3次奖,则共获得数额为元的奖金。假设顾客每次抽奖中获的概率都是,请问:商场将奖金数额m最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目: 来源: 题型:解答题

甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.
(I)求随机变量的分布列及其数学期望E
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

一个袋中装有大小相同的黑球和白球共9个,从中任取2个球,记随机变量为取出2球中白球的个数,已知
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点满足的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该场地停车,两人停车都不超过4小时.
(Ⅰ)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费6元的概率;
(Ⅱ)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲乙二人停车付费之和为28元的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.求:
(Ⅰ)输出的x(x<6)的概率;
(Ⅱ)输出的x(6<x≤8)的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次.
(Ⅰ)写出所有基本事件‘
(Ⅱ)求三次摸到的球恰有两次颜色相同的概率;
(Ⅲ)求三次摸到的球至少有1个白球的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为 .已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。

查看答案和解析>>

科目: 来源: 题型:解答题

一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.
(Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率;
(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.

查看答案和解析>>

同步练习册答案