相关习题
 0  155795  155803  155809  155813  155819  155821  155825  155831  155833  155839  155845  155849  155851  155855  155861  155863  155869  155873  155875  155879  155881  155885  155887  155889  155890  155891  155893  155894  155895  155897  155899  155903  155905  155909  155911  155915  155921  155923  155929  155933  155935  155939  155945  155951  155953  155959  155963  155965  155971  155975  155981  155989  266669 

科目: 来源: 题型:解答题

小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:

售出个数
10
11
12
13
14
15
天数
3
3
3
6
9
6
试依据以频率估计概率的统计思想,解答下列问题:
(1)计算小王某天售出该现烤面包超过13个的概率;
(2)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量.试求小王增加订购量的概率.
(3)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是
⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某工厂在试验阶段大量生产一种零件,这种零件有两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.
(1)求一个零件经过检测为合格品的概率是多少?
(2)任意依次抽取该种零件个,设表示其中合格品的个数,求的分布列及数学期望

查看答案和解析>>

科目: 来源: 题型:解答题

有甲、乙两个班进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表:

 
优秀
非优秀
总计
甲班
20
 
 
乙班
 
60
 
总计
 
 
210
 
已知从全部210人中随机抽取1人为优秀的概率为
(1)请完成上面的2×2列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”.
附:,其中.
参考数据
≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
>2.706时,有90%的把握判定变量A,B有关联;
>3.841时,有95%的把握判定变量A,B有关联;
>6.635时,有99%的把握判定变量A,B有关联.
 

查看答案和解析>>

科目: 来源: 题型:解答题

一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设为取得红球的个数.
(1)求的分布列;
(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
(1)求这两个班学生成绩的中位数及x的值;
(2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

设某地区型血的人数占总人口数的比为,现从中随机抽取3人.
(1)求3人中恰有2人为型血的概率;
(2)记型血的人数为,求的概率分布与数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:

奖次
一等奖
二等奖
三等奖
随机数组的特征
3个1或3个0
只有2个1或2个0
只有1个1或1个0
资金(单位:元)
5m
2m
m
 
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断. 5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进.在5月13日,仍时有较强余震发生,天气状况也不利于空中航行. 已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是,从空中抵达灾区的概率是
(1)求在5月13日恰有1支队伍抵达灾区的概率;
(2)求在5月13日抵达灾区的队伍数的数学期望.

查看答案和解析>>

同步练习册答案